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Low-Loss Ti: LiNb03 Waveguide Bends at A = 1.3 pm

WILLIAM J. MINFORD, STEVEN K. KOROTKY, AND ROD C. ALFERNESS

Abstract–Low-loss waveguide bends are necessary for many proposed

integrated optical circuits. The bend loss associated with an S-shaped

transition connecting offset 6 pm wide titanium-indiffused lithium

niobate strip waveguides has been measured as a function of transition
length and initiaf Ti metal thickness for 1.3 pm wavelength. Losses as
low as 0.2 + 0.2 dB have been achieved for a transition between offset
parallel waveguides with a 0.1 mm lateral and 3.25 mm longitudinsJ
separation. The bend loss is shown to be strongly dependent on the
mode confinement and less sensitive to the ahape of the transition
curve.

I. INTRODUCTION

G
UIDED-WAVE optical devices often require waveguide

bends as an integral part of the design. This occurs, for

example, in the transition region where the interguide separa-

tion characteristic of optical circuitry is enlarged to permit

input/output coupling to fibers. The density of optical cir-

cuits which can ultimately be achieved depends, to a large

extent, on the guide transition length that can be tolerated

for acceptably low bend losses.

To date, several configurations for the transition path have

been considered for titanium-indiffused lithium niobate

(Ti: LiNb03) strip waveguides. Hutcheson et al. [1] have

measured bending losses for offset parallel waveguides con-

nected by straight sections and also sections having a constant

radius of curvature. For a transition of O.1/3.0 mm (lateral

offset/longitudinal offset), for example, the joined circular

segments (R ~ 2.3 cm) yielded an attenuation at k = 0.63 ~m

of approximately 2.5 dB, while the attenuation for a similar

transition using a single straight section with two abrupt bends

of ~2° was greater than 10 dB. Taylor and Shumacher [2]

have reported an attenuation of approximately 4 dB for the

same single straight section transition at h = 0.63 pm. The

high losses in both of these cases were due, in part, to the

weakly guiding waveguides used and to transition curves with

discontinuities in the first and second derivative.

Johnson and Leonberger [3] have been able to reduce losses

resulting from abrupt bends by increasing the optical confine-

ment and by utilizing a coherent coupling effect first proposed

by Taylor [4] . By choosing the optimal length between abrupt
10 bends, they were able to take advantage of coherent cou-

pling to obtain an attenuation of 1.5 dB at X = 0.63 ~m for a

transition of O.15/4.4 mm. At X = 1.06 ~m, the coherent

coupling length measured is larger, requiring a longer transi-

tion for comparable losses.
A further improvement in bend transmission has been
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achieved by Ramaswamy and Divino [5] by removing most

discontinuities and employing strongly guiding structures.

The S-shaped curve used was a raised-cosine function, as con-

sidered by Marcuse [6], which avoids all discontinuities in the

first and second derivatives, except for those at the matching

points to the parallel guides. An attenuation of 0.3 A 0.3 dB

was obtained for a transition 0.1 /3.0 mm at X = 0.63 flm.

In the works summarized here, efforts to reduce bending loss

have focused on X = 0.63 ~m and on the transition curve geom-

etry. Comparison of the corresponding losses and extrapolation

to the 1.2- 1.6 ~m wavelength regime, important for optical

fiber communication systems, is made difficult because the

degree of optical confinement in each case is unknown and

no simple method for the scaling of bend loss with wavelength

has been given.

Here we report the measurements of bending loss for single-

mode strip waveguides at A = 1.3 pm using an S-shaped transi-

tion curve which has no discontinuities in the first and second

spatial derivatives. This curve is designed to minimize losses

due to curvature reversals and straight-curved transitions,

which have recently been reported to contribute over 1 dB to

the total loss of an S-shaped transition [3]. The effect of the

longitudinal transition length on the bending loss was studied

for a fixed lateral offset of 0.1 mm. A loss as low as 0.2* 0.2

dB was achieved for a transition length equal to 3.25 mm. We

have also investigated the effect of mode confinement on the

bending loss by varying the initial metal thickness for a fixed

diffusion condition. An analysis of the data based on the

bend loss model of Marcatili and Miller [7] is used to quantify

the dependence of loss on mode confinement. The importance

of the transition curve shape is addressed, and we show that it

is less critical than the degree of mode confinement.

II. EXPERIMENT

An S-shaped curve specified by

h

()

2rr
y(x)= ~x-fisin ~x (1)

was used for the transition connecting two offset parallel wave-

guides separated by a length 1 in the longitudinal direction (x)

and offset h in the lateral direction (y). The curvature K along

the transition curve is approximately given by

- (-)2rrh sin 27rx

‘=12 1“
(2)

With this curve, we seek to minimize phase front mismatch

losses along the entire waveguide path by eliminating all dis-

continuities in curvature. An example of a mask used to

generate the curved transition is shown in Fig. 1. This mask
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Fig. 1. Microphotograph of two S-shaped transitions from the EBES

generated mask.

was produced by an electron beam exposure system (EBES)

which wrote the curves as a series of discrete 0.25 flm steps of

varying longitudinal length. On the mask, two straight wave-

guides were situated on either side of a set of three curved

waveguides for relative loss measurements. The waveguides

were separated by at least 0.20 mm to prevent coupling be-

tween them. The longitudinal transition length 1 was varied

from 1-4 mm, while the laterai offset h was fixed at 0.10

mm, which represents the minimum separation necessary for

coupling to an array of fibers.

The waveguides were fabricated on Z-cut, Y-propagating

LiNb03 crystais. Waveguide patterns were delineated using

standard photolithographic techniques. Titanium was evapo-

rated on crystais to thicknesses of 740, 850, and 1110 * 20A.

The waveguide strip widths were 6 Mm wide. All crystals were

diffused at 1050°C for 6 h with flowing Ar replaced with 02

during the cool- down process. Both gaseswere bubbled through

heated H20 to prevent surface guiding [8]. The ends of the

crystais were then cut and polished,

Using end-fire coupling, optical radiation of A = 1.318 pm

wavelength from an Nd-YAG laser was launched into the wave-

guides. All waveguides supported oniy a single TE and TM

mode. Two Ge detectors with lock-in amplifiers were used to

monitor both the laser intensity and the output of the wave-

guides at the polarization selected. Measurements of the wave-

guide output intensity were normalized to that of the laser.

Each bend loss reported is the ratio of the normalized trans-

mittance of one bent waveguide and the average of the four

nearby straight waveguides on the substrate.

The bend losses for the TM and TE modes as a function of

the transition length for 740, 850, and 1110 ~ Ti thickness

are shown in Fig. 2(a) and (b). The statistical range of mea-

sured losses is iO.2 dB, which is essentially the limit of sensi-

tivityy for this experimental setup. As indicated in the figures,

we have achieved low-loss (0.2 * 0.2 dB) bends for transition

lengths as short as 3.25 mm for the TM polarization and 4.10

mm for the TE polarization. The significantly lower losses ob-

served for the TM mode are attributed to the larger change in

refractive index experienced for this polarization [9]. This is

advantageous for device design because the TM polarization in

Z-cut LiNb03 can utilize the large r33 electrooptic coefficient.
Fig. 2(a) and (b) aiso shows the large effect of the Ti thick-

ness on the bend losses for the TM and TE polarizations. These

measurements demonstrate that the effective index difference

AN, or mode confinement, is an important parameter deter-

mining bend loss. This fact must be included in establishing a

device design if overail performance is to be optimized because
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Fig. 2. Bend losses versus transition length l(h = 0.1 mm), for 740,850,
and 1110 A Ti thickness and (a) TM and (b) TE polarizations.

the diffusion conditions required to maximize tiber-waveguide

couplifig [10] or device performance may not be compatible

with those necessary to minimize bending loss. ‘

III. ANALYSIS

To control bending losses it is necessary to assessthe relative

importance of the mode confinement and transition curve

shape. Also, if design rules are to be established, a quantitative
method of characterizing the bend loss associated with given

diffusion conditions is required. To address these problems,

we show that the loss model developed by Marcatili and Miller

[7] for singie-mode slab waveguides can be applied to the

present experimental results with Ti diffused waveguides.

Marcatili and Miiler have shown, under the assumption that

the radius of curvature R of the bend guide is large and mode

conversion can be ignored, that the form of the attenuation

coefficient ~ for single-mode slab waveguides with step index

is

a(R) = Cl e-cZR. (3)

The parameters C’l and Cz are independent of R, but are func-

tions of the guiding characteristics of the straight waveguide. Us-
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ing differing theoretical approaches, White [11] and Heilblum

and Harris [12] have shown that this expression is valid for

more general waveguide structures.

When the effective index IV varies only slightly from the bulk

index nb the expression for C2 can be put into the form

27r (2 AN)3/2

“=x 6
(4)

where AN= fv - nb and his the free space wavelength [7] .

The expression for C’l is not a simple function of AN, but

for completeness, we state it here.

where

zc=~[,+2gcos[y]]2,

t 1.
e~=—t [1@—sm (kx t) + & cos’ z ,

2 2kX

and

(5)

(6a)

(6b)

(7)
L LAJ

In these expressions, t is the width of the slab waveguide, ~ is

given by

and

(8)

(9)

with ne the index within the slab waveguide.

From (4) it is clear that C2 is an increasing function of AN.

Physically, the bend radius, at which a certain loss occurs,

moves to smaller radii when the confinement is increased.

Less obvious is that Cl is also an increasing function of AN.

From the viewpoint of the bend loss model of Marcatili and

Miller, Cl increases with AN because the difference between

the propagation constant within the guide and the bulk medium

increases, making it more difficult for the wave front outside

the guide to remain coherent with the wavefront within the

guide. We note too that both C coefficients are found to scale

inversely with wavelength for fixed N.
Because C2 depends only on AiV and is not an explicit func-

tion of the slab waveguide parameters ne and t, it is not un-

reasonable to assume that the expression for C2 is directly

applicable to strip waveguides. The coefficient Cl, however,

is strongly model-dependent. To calculate this coefficient for

strip waveguides, it is necessary to translate the characteristics

of the two-dimensional diffused waveguide to an equivalent

slab waveguide with step index [13]. This is accomplished

using the effective index method as applied to Ti: LiNb03

strip waveguides by Hocker and Burns [14], [15]. Values of

the C coefficients calculated in this manner show that Cl is

not a strong function of the strip waveguide parameters (width,

depth, and AN) and typically changes by a factor of four

when going from single-mode cutoff to multimode operation.

The Cz coefficient, ,on the other hand, is very dependent on

the waveguide parameters, changing about a factor of 40 across

the single-mode region. Thus, because C2 appears in the

exponential of the expression for the attenuation coeffi-

cient, we expect the bending loss to decrease rapidly with

increasing AN, i.e., mode confinement. Similarly, for com-

parable confinement, the loss at longer wavelengths will be

greater.

Because C2 is directly related to AN, the empirical deter-

mination of C2 provides a method of characterizing and com-

paring waveguides in efforts to reduce bending loss. Also, once

accurate values for Cl and Cz are known, the optimum-shaped

curve can be determined for given boundary conditions. To

demonstrate the usefulness of these ideas, we have extracted

values for Cl, C2, and AN from the pl-esent bend loss data for

the various metal thicknesses and TE and TM polarizations.

This was done, as described below, by effectively deconvoluting

the R-dependence of the attenuation coefficient specified by

(3) from the measured transition length dependence (Fig. 2).

The experimental data in Fig. 2 do not display oscillations

characteristic of strong coherent coupling of the type consid-

ered by Taylor [4]. Nor is there evidence for loss arising from

step-size quantization [6] on the fabrication mask. It is as-

sumed, therefore, that the coupling to nonguided modes is a

single-step process. Thus, if P is the power at a given point

along the waveguide, the power lost as radiation per unit length

is given by

dP
- -O!P

%-
(10)

where CY>0 is the attenuation coefficient and ds is the element

of arc length. The attenuation coefficient is a parametric func-

tion of the position s for the transition curve considered here.

As a result, if power PO is launched into the transition curve,

the power remaining at a given point is

J
s

P(s) = P. exp - Q(S’ ) ds’ (11)
o

and the total attenuation in decibels ‘a for a curve of total arc

length Sl is

J
sl

a(dB) = ~ CI(S) ds .
0

(12)

Using the expression for the curvature ~ = 1/R in the Carte-

sian coordinate system, the total bend attenuation for the tran-

sition curve specified by (1) can be integrated approximately.
The result, ignoring propagation loss, is

(13)

where T = Cz 12/(27rh). Curves calculated using this expression

were fit to the experimental data to extract values for Cl and

C2. The fitted curves are compared to the data in Fig. 3(a)

and (b).
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Fig. 3. Bend losses versus transition length l(h = 0.1 mm), for 740,850,
and 1110 A Ti thickness and (a) TM and (b) TE polarizations. The
solid lines are the best fit of Marcatili and Miller’s model to the data.

We conclude from the good fit to the data, that the form of

the attenuation coefficient in (3) is valid for the bending radii

encountered. We also note that the nearly exponential depen-

dence displayed in the figures and presentin(13) indicates that

the geometry for a fwed attenuation does not scale simply as

the aspect ratio l/h or alternately, the bend angle, but is better

described by an 12/h dependence. Thus, if the offset h need be

increased by a factor of two, then the transition length need

only increase by W times the original length. Again, coherent

coupling and mask-size quantization effects are apparently

negligible in the present situation.

The fitted values of Cl and Cz are listed in Table I, together

with the extracted values of AN (4) and measured values for

the geometric mean of the mode size [16]. The effective in-

dex difference AN is also plotted in Fig. 4 as a function of

initial metal thickness for both polarizations. The values are

in good agreement with those obtained using a variational

technique for the propagation constant [16]. It is clear from

the above discussion that the mode confinement specified by

AN is a useful quantity for comparing and projecting bend loss

TABLE I

TMnium Empirical LOW Parameters Mode Size
Polarization thickness G

7 (A) Cl (mm-’) C2 (mm-’) (lIN’) (Xm)

740 7.07 0.100 0.49 6.6
TM (q.) S50 4.30 0,171 0.61 6.0

1110 16 6S 0.418 1.30 5.3

740 8.64 0.105 0.51 6.9
TE (q.) 850 11.05 0.159 0,67 5.8

1110 10.s3 0.231 0.86 6.2

* d and w refer to the depth and width of the mode measured

at the I/e value.
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1.5 r
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~2
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Fig. 4. Effective index difference versus Ti metal thickness for TE and
TM polarizations as extracted from empirical bend loss parameter C2.

As a final aspect of the present analysis, we have considered

the relative importance of the curve shape in determining bend-

ing losses. To do this we fix the boundary condition of the

transition geometry to be identical to that used for the measure-

ments (1), i.e., the first and second derivatives of the function

describing the transition shape should be zero at the matching

points to the offset parallel waveguides. With this boundary

condition fixed, we consider the shape of the curve as variablle.

Because the functional form of the attenuation coefficient and

the values of its parameters (C-coefficients) are known, the

shape of the transition curve which minimizes bending loss fbr

fixed h and 1can be determined using the calculus of variations

[17]. In Fig. 5 we compare the attenuation that can be achieved

using the optimum-shaped curve, as specified by the variational

technique, to that of the analytic function used for the experi-

ments. The values of the loss parameters Cl and C2 correspond

to the lowest attenuation achieved at h = 1.3 ~m. We find that

the curve given by (1) has a loss which closely approaches the
theoretical lower limit. The calculations predict, however,

that the attenuation of 0.9 dB for the analytic function with

h = 0.1 mm and 1 = 2.5 mm can be reduced to about 0.3 dB by

optimizing the shape of the curve. By extrapolating the curves
shown in Fig. 4, we estimate that a similar reduction can be

achieved by increasing the metal thickness by about 80 A, (or

performance. rou@ly 7 percent. Thus, although the reduction in loss that
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Fig. 5. Bend loss curves for analytical function measured and variational
lower limit calculated for identical boundary conditions.

can be obtained by optimizing the curve shape may be impor-

tant in some situations, the attenuation is less sensitive to

changes in the shape than to changes in the waveguide param-

eters determining mode confinement.

SUMMARY

Measurements for the bending loss for S-shaped curves having

no discontinuities in the first and second derivative have been

presented for Ti: LiNb03 waveguides which are single mode at

X=l.3tim.

For the most strongly confining waveguide, a loss as low as

0.2 f 0.2 dB was achieved for a 3.25 mm longitudinal transi-

tion length and 0.10 mm lateral offset. The losses for wave-

guides fabricated using differing Ti metal thickness show that

the mode confinement is a critical factor determining bending

loss. The relationship was made clear by analyzing the data

within the framework of the bend loss model of Marcatili and
Miller. Using the results of the semiempirical analysis of the

bend loss measurements, we have shown that the exact form

of the transition curve is less important than the degree of
mode confinement.
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