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Low-Loss Ti:LiNbO3 Waveguide Bends at A = 1.3 um

WILLIAM J. MINFORD, STEVEN K. KOROTKY, anp ROD C. ALFERNESS

Abstract—Low-loss waveguide bends are necessary for many proposed
integrated optical circuits. The bend loss associated with an S-shaped
transition connecting offset 6 um wide titanium-indiffused lithium
niobate strip waveguides has been measured as a function of transition
length and initial Ti metal thickness for 1.3 um wavelength. Losses as
low as 0.2 + 0.2 dB have been achieved for a transition between offset
parallel waveguides with a 0.1 mm lateral and 3.25 mm longitudinal
separation. The bend loss is shown to be strongly dependent on the
mode confinement and less sensitive to the shape of the transition
curve,

I. INTRODUCTION

UIDED-WAVE optical devices often require waveguide

bends as an integral part of the design. This occurs, for
example, in the transition region where the interguide separa-
tion characteristic of optical circuitry is enlarged to permit
input/output coupling to fibers. The density of optical cir-
cuits which can ultimately be achieved depends, to a large
extent, on the guide transition length that can be tolerated
for acceptably low bend losses.

To date, several configurations for the transition path have
been considered for titanium-indiffused lithium niobate
(Ti:LiNbO3) strip waveguides. Hutcheson er al. [1] have
measured bending losses for offset parallel waveguides con-
nected by straight sections and also sections having a constant
radius of curvature. For a transition of 0.1/3.0 mm (lateral
offset/longitudinal offset), for example, the joined circular
segments (R ~ 2.3 cm) yielded an attenuation at A = 0.63 um
of approximately 2.5 dB, while the attenuation for a similar
transition using a single straight section with two abrupt bends
of ~2° was greater than 10 dB. Taylor and Shumacher [2]
have reported an attenuation of approximately 4 dB for the
same single straight section transition at A =0.63 um. The
high losses in both of these cases were due, in part, to the
weakly guiding waveguides used and to transition curves with
discontinuities in the first and second derivative.

Johnson and Leonberger [3] have been able to reduce losses
resulting from abrupt bends by increasing the optical confine-
ment and by utilizing a coherent coupling effect first proposed
by Taylor {4]. By choosing the optimal length between abrupt
1° bends, they were able to take advantage of coherent cou-
pling to obtain an attenuation of 1.5 dB at A =0.63 um for a
transition of 0.15/4.4 mm. At A=1.06 um, the coherent
coupling length measured is larger, requiring a longer transi-
tion for comparable losses.

A further improvement in bend transmission has been
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achieved by Ramaswamy and Divino [5] by removing most
discontinuities and employing strongly guiding structures.
The S-shaped curve used was a raised-cosine function, as con-
sidered by Marcuse [6], which avoids all discontinuities in the
first and second derivatives, except for those at the matching
points to the parallel guides. An attenuation of 0.3 £0.3 dB
was obtained for a transition 0.1/3.0 mm at A = 0.63 um.

In the works summarized here, efforts to reduce bending loss
have focused on X = 0.63 um and on the transition curve geom-
etry. Comparison of the corresponding losses and extrapblation
to the 1.2-1.6 um wavelength regime, important for optical
fiber communication systems, is made difficult because the
degree of optical confinement in each case is unknown and
no simple method for the scaling of bend loss with wavelength
has been given.

Here we report the measurements of bending loss for single-
mode strip waveguides at A = 1.3 um using an S-shaped transi-
tion curve which has no discontinuities in the first and second
spatial derivatives. This curve is designed to minimize losses
due to curvature reversals and straight-curved transitions,
which have recently been reported to contribute over 1 dB to
the total loss of an S-shaped transition {3]. The effect of the
longitudinal transition length on the bending loss was studied
for a fixed lateral offset of 0.1 mm. A loss aslow as 0.2 £ 0.2
dB was achieved for a transition length equal to 3.25 mm. We
have also investigated the effect of mode confinement on the
bending loss by varying the initial metal thickness for a fixed
diffusion condition. An analysis of the data based on the
bend loss model of Marcatili and Miller [7] is used to quantify
the dependence of loss on mode confinement. The importance
of the transition curve shape is addressed, and we show that it
is less critical than the degree of mode confinement.

II. EXPERIMENT
An S-shaped curve specified by

h h < 27 x)
=—x- _—sin{—
yx) =X o ]
was used for the transition connecting two offset parallel wave-
guides separated by a length [ in the longitudinal direction (x)

and offset / in the lateral direction (). The curvature x along
the transition curve is approximately given by

)

(2

With this curve, we seek to minimize phase front mismatch
losses along the entire waveguide path by eliminating all dis-
continuities in curvature. An example of a mask used to
generate the curved transition is shown in Fig. 1. This mask
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Fig. 1. Microphotograph of two S-shaped transitions from the EBES
generated mask.

was produced by an electron beam exposure system (EBES)
. which wrote the curves as a series of discrete 0.25 um steps of
varying longitudinal length. On the mask, two straight wave-
guides were situated on either side of a set of three curved
waveguides for relative loss measurements. The waveguides
were separated by at least 0.20 mm to prevent coupling be-
tween them. The longitudinal transition length I was varied
from 1-4 mm, while the lateral offset 2 was fixed at 0.10
mm, which represents the minimum separation necessary for
coupling to an array of fibers.

The waveguides were fabricated on Z-cut, Y-propagating
LiNbO; crystals. Waveguide patterns were delineated using
standard photolithographic techniques. Titanium was evapo-
rated on crystals to thicknesses of 740, 850, and 1110 + 20 A.
The waveguide strip widths were 6 um wide. All crystals were
diffused at 1050°C for 6 h with flowing Ar replaced with O,
during the cool-down process. Both gases were bubbled through
heated H,0 to prevent surface guiding [8]. The ends of the
crystals were then cut and polished.

Using end-fire coupling, optical radiation of A=1.318 um
wavelength from an Nd-YAG laser was launched into the wave-
guides. All waveguides supported only a single TE and TM
mode. Two Ge detectors with lock-in amplifiers were used to
monitor both the laser intensity and the output of the wave-
guides at the polarization selected. Measurements of the wave-
guide output intensity were normalized to that of the laser.
Each bend loss reported is the ratio of the normalized trans-
mittance of one bent waveguide and the average of the four
nearby straight waveguides on the substrate.

The bend losses for the TM and TE modes as a function of
the transition length for 740, 850, and 1110 A Ti thickness
are shown in Fig. 2(a) and (b). The statistical range of mea-
sured losses is 0.2 dB, which is essentially the limit of sensi-
tivity for this experimental setup. As indicated in the figures,
we have achieved low-loss (0.2 £ 0.2 dB) bends for transition
lengths as short as 3.25 mm for the TM polarization and 4.10
mm for the TE polarization. The significantly lower losses ob-
served for the TM mode are attributed to the larger change in
refractive index experienced for this polarization {9]. This is
advantageous for device design because the TM polarization in
Z-cut LiNbO, can utilize the large r35 electrooptic coefficient.

Fig. 2(a) and (b) also shows the large effect of the Ti thick-
ness on the bend losses for the TM and TE polarizations. These
measurements demonstrate that the effective index difference
AN, or mode confinement, is an important parameter deter-
mining bend loss. This fact must be included in establishing a
device design if overall performance is to be optimized because
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Fig. 2. Bend losses versus transition length /(4 = 0.1 mm), for 740, 850,
and 1110 A Ti thickness and (a) TM and (b) TE polarizations.

the diffusion conditions required to maximize fiber-waveguide
coupling [10] or device performance may not be compatible
with those necessary to minimize bending loss.

II1. ANALYSIS

To control bending losses it is necessary to assess the relative
importance of the mode confinement and transition curve
shape. Also, if design rules are to be established, a quantitative
method of characterizing the bend loss associated with given
diffusion conditions is required. To address these problems,
we show that the loss model developed by Marcatili and Miller
[7] for single-mode slab waveguides can be applied to the
present experimental results with Ti diffused waveguides.

Marcatili and Miller have shown, under the assumption that
the radius of curvature R of the bend guide is large and mode
conversion can be ignored, that the form of the attenuation
coefficient « for single-mode slab waveguides with step index
is

a(R)=C,e OR, 3

The parameters Cy and C, are independent of R, but are func-
tions of the guiding characteristics of the straight waveguide. Us-
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ing differing theoretical approaches, White [11] and Heilblum
and Harris [12] have shown that this expression is valid for
more general waveguide structures.

When the effective index AV varies only slightly from the bulk
index ny, the expression for C, can be put into the form

_2m (2ANYF
27 A \/}7; (4)

where AN = N - ny, and X is the free space wavelength [7].
The expression for C; is not a simple function of AN, but
for completeness, we state it here.

1 e
C = — 5
Y (5)
where
n ket||?
Z, = —2—;’\- [t+ 2§ cos [—%—H , (62)
t Kyt
=— + i + 2 xt
€= 2k, sin (k. 1) + £ cos [ 5 ], (6b)
and
/_g 2 kxt 1743
€] 5 cos 5 e'ls, N

In these expressions, ¢ is the width of the slab waveguide, £ is
given by

1 2«
E=T Nzﬁn% (8)
and
2w 5 5
ky =——)\ vn; - N 9)

with 7, the index within the slab waveguide.

From (4) it is clear that C, is an increasing function of AN.
Physically, the bend radius, at which a certain loss occurs,
moves to smaller radii when the confinement is increased.
Less obvious is that C; is also an increasing function of AN.
From the viewpoint of the bend loss model of Marcatili and
Miller, C; increases with AN because the difference between
the propagation constant within the guide and the bulk medium
increases, making it more difficult for the wavefront outside
the guide to remain coherent with the wavefront within the
guide. We note too that both C coefficients are found to scale
inversely with wavelength for fixed V.

Because C, depends only on AN and is not an explicit func-
tion of the slab waveguide parameters n, and ¢, it is not un-
reasonable to assume that the expression for C, is directly
applicable to strip waveguides. The coefficient Cy, however,
is strongly model-dependent. To calculate this coefficient for
strip waveguides, it is necessary to translate the characteristics
of the two-dimensional diffused waveguide to an equivalent
slab waveguide with step index [13]. This is accomplished
using the effective index method as applied to Ti:LiNbO,
strip waveguides by Hocker and Burns [14], [15]. Values of
the C coefficients calculated in this manner show that C; is
not a strong function of the strip waveguide parameters (width,
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depth, and AN) and typically changes by a factor of four
when going from single-mode cutoff to multimode operation.
The C, coefficient, on the other hand, is very dependent on
the waveguide parameters, changing about a factor of 40 across
the single-mode region. Thus, because C, appears in the
exponential of the expression for the attenuation coeffi-
cient, we expect the bending loss to decrease rapidly with
increasing AN, i.e., mode confinement. Similarly, for com-
parable confinement, the loss at longer wavelengths will be
greater.

Because C, is directly related to AN, the empirical deter-
mination of €, provides a method of characterizing and com-
paring waveguides in efforts to reduce bending loss. Also, once
accurate values for C; and C, are known, the optimum-shaped
curve can be determined for given boundary conditions. To
demonstrate the usefulness of these ideas, we have extracted
values for Cy, C,, and AN from the present bend loss data for
the various metal thicknesses and TE and TM polarizations.
This was done, as described below, by effectively deconvoluting
the R-dependence of the attenuation coefficient specified by
(3) from the measured transition length dependence (Fig. 2).

The experimental data in Fig. 2 do not display oscillations
characteristic of strong coherent coupling of the type consid-
ered by Taylor [4]. Nor is there evidence for loss arising from
step-size quantization [6] on the fabrication mask. It is as-
sumed, therefore, that the coupling to nonguided modes is a
single-step process. Thus, if P is the power at a given point
along the waveguide, the power lost as radiation per unit length
is given by

ar_

-aP
ds

(10)
where a2 0 is the attenuation coefficient and ds is the element
of arc length. The attenuation coefficient is a parametric func-
tion of the position s for the transition curve considered here.
As a result, if power Py is launched into the transition curve,
the power remaining at a given point is

P(s) =P, exp - f ' a(s')ds' an
0

and the total attenuation in decibels'a for a curve of total arc
length S; is

N
a(dB)=LO——f la(s) ds. (12)
0

In10

Using the expression for the curvature k = 1/R in the Carte-
sian coordinate system, the total bend attenuation for the tran-
sition curve specified by (1) can be integrated approximately.
The result, ignoring propagation loss, is

h Cy

10
a(dB) ~ -—— 221 ——— e 7 [1 - ¢ "]

In 10 [ G, (13)

where v = C, I2/(2wh). Curves calculated using this expression
were fit to the experimental data to extract values for C; and
C,. The fitted curves are compared to the data in Fig. 3(a)
and (b).
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Fig. 3. Bend losses versus transition length /(7 = 0.1 mm), for 740, 850,
and 1110 A Ti thickness and (a) TM and (b) TE polarizations. The
solid lines are the best fit of Marcatili and Miller’s model to the data.

We conclude from the good fit to the data, that the form of
the attenuation coefficient in (3) is valid for the bénding radii
encountered. We also note that the nearly exponential depen-
dence displayed in the figures and present in (13)indicates that
the geometry for a fixed attenuation does not scale simply as
the aspect ratio I/h or alternately, the bend angle, but is better
described by an I?/h dependence. Thus, if the offset 4 need be
increased by a factor of two, then the transition length need
only increase by v/2 times the original length. Again,coherent
coupling and mask-size quantization effects are apparently
negligible in the present situation.

The fitted values of Cy and C, are listed in Table I, together
with the extracted values of AN (4) and measured values for
the geometric mean of the mode size [16]. The effective in-
dex difference AN is also plotted in Fig. 4 as a function of
initial metal thickness for both polarizations. The values are
in good agreement with those obtained using a variational
technique for the propagation constant [16]. It is clear from
the above discussion that the mode confinement specified by
AN is a useful quantity for comparing and projecting bend loss
performance.
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TABLE 1
Titanium  Empirical Loss Parameters Mode Size

Polarization  thickness AN Viw

7 (A) Ci(mm™) Cy(mm™) (107 (um)
740 7.07 0.100 0.49 6.6

T™ (n.) 850 4.30 0.171 0.61 6.0
1110 16 68 0.418 1.30 5.3
740 8.64 0.105 0.51 6.9
TE (n,) 850 11.05 0.159 0.67 5.8
1110 10.83 0.231 0.86 6.2

* d and w refer to the depth and width of the mode measured
at the 1/e value.
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Fig. 4. Effective index difference versus Ti metal thickness for TE and
TM polarizations as extracted from empirical bend loss parameter C,.

As a final aspect of the present analysis, we have considered
the relative importance of the curve shape in determining bend-
ing losses. To do this we fix the boundary condition of the
transition geometry to be identical to that used for the measure-
ments (1), i.e., the first and second derivatives of the function
describing the transition shape should be zero at the matching
points to the offset parallel waveguides. With this boundary
condition fixed, we consider the shape of the curve as variable.
Because the functional form of the attenuation coefficient and
the values of its parameters (C-coefficients) are known, the
shape of the transition curve which minimizes bending loss for
fixed & and [ can be determined using the calculus of variations
[17]. InFig. 5 we compare the attenuation that can be achieved
using the optimum-shaped curve, as specified by the variational
technique, to that of the analytic function used for the experi-
ments. The values of the loss parameters Cy and C, correspond
to the lowest attenuation achieved at A = 1.3 um. We find that
the curve given by (1) has a loss which closely approaches the
theoretical lower limit. The calculations predict, however,
that the attenuation of 0.9 dB for the analytic function with
h=0.1 mm and /= 2.5 mm can be reduced to about 0.3 dB by
optimizing the shape of the curve. By extrapolating the curves
shown in Fig. 4, we estimate that a similar reduction can be
achieved by increasing the metal thickness by about 80 A, or
roughly 7 percent. Thus, although the reduction in loss that
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10 -~
- E MEASURED FOR
r SINE-GENERATED
z F /_ FUNCTION
s L
[
g [ \
4
E LiNbO
[~ - 3
: 'E zZ-cut
¥ TM MODE
e | \
<= [
oL CALCULATED/\
VARIATIONALY
LOWER LIMIT \
1 1 1 1 1 \ | | J

1 2 3
TRANSITION LENGTH, £ (mm) [h=0.1mm]

Fig. 5. Bend loss curves for analytical function measured and variational
lower limit calculated for identical boundary conditions.

can be obtained by optimizing the curve shape may be impor-
tant in some situations, the attenuation is less sensitive to
changes in the shape than to changes in the waveguide param-
eters determining mode confinement.

SUMMARY

Measurements for the bending loss for S-shaped curves having
no discontinuities in the first and second derivative have been
presented for Ti:LiNbOj; waveguides which are single mode at
A= 1.3 um.

For the most strongly confining waveguide, a loss as low as
0.2 +0.2 dB was achieved for a 3.25 mm longitudinal transi-
tion length and 0.10 mm lateral offset. The losses for wave-
guides fabricated using differing Ti metal thickness show that
the mode confinement is a critical factor determining bending
loss. The relationship was made clear by analyzing the data
within the framework of the bend loss model of Marcatili and
Miller. Using the results of the semiempirical analysis of the
bend loss measurements, we have shown that the exact form
of the transition curve is less important than the degree of
mode confinement.
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